A polynomial oracle-time algorithm for convex integer minimization
نویسندگان
چکیده
In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. We extend these results to convex N-fold integer minimization problems and to convex 2-stage stochastic integer minimization problems. Finally, we present some applications of convex N-fold integer minimization problems for which our approach provides polynomial time solution algorithms.
منابع مشابه
Integer convex minimization by mixed integer linear optimization
Minimizing a convex function over the integral points of a bounded convex set is polynomial in fixed dimension [6]. We provide an alternative, short, and geometrically motivated proof of this result. In particular, we present an oraclepolynomial algorithm based on a mixed integer linear optimization oracle.
متن کاملPolynomial-Time Algorithms for Linear and Convex Optimization on Jump Systems
The concept of jump system, introduced by Buchet and Cunningham (1995), is a set of integer points with a certain exchange property. In this paper, we discuss several linear and convex optimization problems on jump systems and show that these problems can be solved in polynomial time under the assumption that a membership oracle for a jump system is available. We firstly present a polynomial-ti...
متن کاملMirror-Descent Methods in Mixed-Integer Convex Optimization
In this paper, we address the problem of minimizing a convex function f over a convex set, with the extra constraint that some variables must be integer. This problem, even when f is a piecewise linear function, is NP-hard. We study an algorithmic approach to this problem, postponing its hardness to the realization of an oracle. If this oracle can be realized in polynomial time, then the proble...
متن کاملConvex Separation From Optimization Using Analytic Centers
Let K be a convex subset of Rn containing a ball of finite radius centered at c0 and contained in a ball of finite radius R. We give an oracle-polynomial-time algorithm for the weak separation problem for K given an oracle for the weak optimization problem for K. This is done by reducing the weak separation problem for K to the convex feasibility (nonemptiness) problem for a set K ′, and then b...
متن کاملEfficient edge-skeleton computation for polytopes defined by oracles
In general dimension, there is no known total polynomial algorithm for either convex hull or vertex enumeration, i.e. an algorithm whose complexity depends polynomially on the input and output sizes. It is thus important to identify problems (and polytope representations) for which total polynomial-time algorithms can be obtained. We offer the first total polynomial-time algorithm for computing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 126 شماره
صفحات -
تاریخ انتشار 2011